These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Kinetic modeling of sonocatalytic degradation of reactive orange 29 in the presence of lanthanide-doped ZnO nanoparticles. Author: Khataee A, Saadi S, Vahid B. Journal: Ultrason Sonochem; 2017 Jan; 34():98-106. PubMed ID: 27773330. Abstract: The sonocatalytic degradation of reactive orange 29 (RO29) was examined from the reaction kinetics point of view. Sonochemically synthesized lanthanides (Ho3+ and Er3+)-doped ZnO nanoparticles were utilized as catalyst during the sonocatalytic process. The prepared nanoparticles were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The aqueous RO29 solution was irradiated with a 36kHz ultrasonic bath (150W) for investigation of the degradation kinetics by varying of the initial dye concentration (10-30mg/L) and catalyst dosage (0.25-1g/L). A novel kinetic model was developed and validated for prediction of the RO29 sonocatalytic degradation efficiency using generally accepted intrinsic elementary reactions. The proposed kinetic model clearly demonstrates the dependence of the apparent first-order rate constant on the mentioned operational parameters. The predicted values of degradation efficiency and experimental results were in good agreement with appropriate correlation coefficient (R2>0.945).[Abstract] [Full Text] [Related] [New Search]