These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Repair of sublethal damage in two human tumor cell lines grown as multicellular spheroids.
    Author: Schwachöfer JH, Crooijmans RP, van Gasteren JJ, Hoogenhout J, Jerusalem CR, Kal HB, Theeuwes AG.
    Journal: Int J Radiat Oncol Biol Phys; 1989 Sep; 17(3):591-5. PubMed ID: 2777647.
    Abstract:
    Multicellular tumor spheroids (MTS) provide a suitable in vitro model to study radiation sensitivity of tumor cells. Two cell lines of human origin, obtained from a neuroblastoma (NB-100) and a squamous cell carcinoma (HN-1), were exposed to graded doses (4-9 Gy) of radiation with 18 MV photons. Radiation was applied either as a single or as a split dose with an interval of 6 hr to determine the extent of sublethal damage repair. Treated spheroids regrew at approximately the same growth rate as control multicellular tumor spheroids, preceded by a static or regression phase. Radiation response was quantified in terms of regrowth delay, expressed as the time needed for treated spheroids to obtain an 8-fold increase of the initial volume at the time of irradiation. Data obtained from regrowth delay analysis were used to calculate the extent of sublethal damage repair, showing for the squamous cell carcinoma line a fractionally higher capacity to repair sublethal damage than the neuroblastoma line. Repair increased with larger dose fractions in both cell lines. Our results show that multicellular tumor spheroids from the two cell lines used in this study are best applicable at relatively high total radiation doses. This makes multicellular tumor spheroids a suitable model for the in vitro evaluation of clinical treatment rationales such as hyperfractionation.
    [Abstract] [Full Text] [Related] [New Search]