These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Comparison of Antibiotic-Coated versus Uncoated Porcine Dermal Matrix.
    Author: Cohen LE, Imahiyerobo TA, Scott JR, Spector JA.
    Journal: Plast Reconstr Surg; 2016 Nov; 138(5):844e-855e. PubMed ID: 27782996.
    Abstract:
    BACKGROUND: The objective of this study was to evaluate the antimicrobial performance of a rifampin/minocycline-coated, non-cross-linked, acellular porcine dermal matrix (XenMatrix AB) compared to an uncoated, non-cross-linked, acellular porcine dermal matrix (Strattice) after implantation/inoculation with methicillin-resistant Staphylococcus aureus or Escherichia coli in a dorsal rabbit model. METHODS: Forty male New Zealand White rabbits were bilaterally implanted with XenMatrix AB or Strattice grafts and inoculated with clinically isolated methicillin-resistant S. aureus (5 × 10 colony-forming units/ml) or E. coli (1 × 10 colony-forming units/ml). At 2 and 8 weeks, sites were analyzed for viable methicillin-resistant S. aureus/E. coli colony-forming units, abscess formation, and histologic response (n = 5 rabbits per group per bacterium per time point). RESULTS: XenMatrix AB completely inhibited bacterial colonization of the graft, inhibited abscess formation, reduced inflammation and encapsulation, and improved neovascularization compared with Strattice. XenMatrix AB implants exhibited significantly fewer colony-forming units compared with Strattice implants at 2 weeks (methicillin-resistant S. aureus) (p < 0.01) and at 2 and 8 weeks (E. coli) (p < 0.05). In addition, XenMatrix AB implants demonstrated a significantly lower abscess score at 2 weeks (methicillin-resistant S. aureus) and 8 weeks (E. coli) (p < 0.01 in both cases). For both types of bacteria and both time points evaluated, XenMatrix AB implants exhibited minimal inflammation and encapsulation and a lack of neutrophils. In contrast, Strattice implants displayed marked inflammatory and neutrophilic responses and moderate encapsulation. CONCLUSIONS: This study demonstrated the antimicrobial performance of a rifampin/minocycline-coated bioprosthetic (XenMatrix AB) in a rabbit inoculation model. XenMatrix AB completely inhibited bacterial colonization of the graft, with minimal host inflammation and encapsulation, and improved neovascularization compared with Strattice.
    [Abstract] [Full Text] [Related] [New Search]