These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Ventrolateral medullary neurones: effects on magnitude and rhythm of discharge of mesenteric and renal nerves in cats. Author: Stein RD, Weaver LC, Yardley CP. Journal: J Physiol; 1989 Jan; 408():571-86. PubMed ID: 2778740. Abstract: 1. Discharge of whole mesenteric and renal nerves was recorded in eighteen chloralose-anaesthetized, artificially respired cats. 2. Inhibition of tonic activity of neurones within the rostral ventrolateral medulla (RVLM blockade) by bilateral application of glycine caused significant reductions in discharge of renal and mesenteric nerves, arterial blood pressure and heart rate. The decrease in discharge of renal nerves was significantly greater than that of mesenteric nerves. 3. During the response to glycine application, the spinal cord was transected at the first cervical segment. The magnitude of renal nerve discharge after transection was not different from that during blockade of the RVLM. On the other hand, mesenteric nerve activity increased following spinal cord transection, returning to control levels. 4. Power spectral analysis revealed that mesenteric and renal nerves discharged with periodicities ranging from 1 to 6 Hz. Application of glycine to the RVLM reduced the slow rhythm in firing of mesenteric and renal nerves similarly. Transection of the spinal cord resulted in further reduction in the rhythmicity in discharge of both nerves. 5. The results indicate that excitatory drive from the RVLM is crucial for the maintenance of on-going discharge of renal, but not of mesenteric nerves. However, such inputs are apparently essential to maintain the slow rhythm in firing of both nerves.[Abstract] [Full Text] [Related] [New Search]