These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Study of the role of tumor necrosis factor-α (-308 G/A) and interleukin-10 (-1082 G/A) polymorphisms as potential risk factors to acute kidney injury in patients with severe sepsis using high-resolution melting curve analysis.
    Author: Hashad DI, Elsayed ET, Helmy TA, Elawady SM.
    Journal: Ren Fail; 2017 Nov; 39(1):77-82. PubMed ID: 27788614.
    Abstract:
    RATIONAL: Septic acute kidney injury (AKI) is a prevalent complication in intensive care units with an increased incidence of complications. OBJECTIVE: The aim of the present study was to assess the use of high-resolution melting curve (HRM) analysis in investigating whether the genetic polymorphisms; -308 G/A of tumor necrosis factor-α (TNF-α), and -1082 G /A of Interleukin-10 (IL-10) genes may predispose patients diagnosed with severe sepsis to the development of AKI. METHODS: One hundred and fifty patients with severe sepsis participated in the present study; only sixty-six developed AKI. Both polymorphisms were studied using HRM analysis. MAIN FINDINGS: The low producer genotype of both studied polymorphism of TNF-α and IL-10 genes was associated with AKI. Using logistic regression analysis, the low producer genotypes remained an independent risk factor for AKI. A statistically significant difference was detected between both studied groups as regards the low producer genotype in both TNF-α (-308 G/A) and interleukin-10 (IL-10) (-1082 G/A) polymorphisms being prevalent in patients developing AKI. Principle conclusions: The low producer genotypes of both TNF-α (-308 G/A) and IL-10 (-1082 G/A) polymorphisms could be considered a risk factor for the development of AKI in critically ill patients with severe sepsis, thus management technique implemented for this category should be modulated rescuing this sector of patients from the grave deterioration to acute kidney injury. Using HRM for genotyping proved to be a highly efficient, simple, cost-effective genotyping technique that is most appropriate for the routine study of large-scale samples.
    [Abstract] [Full Text] [Related] [New Search]