These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Single-stage cell-based cartilage repair in a rabbit model: cell tracking and in vivo chondrogenesis of human umbilical cord blood-derived mesenchymal stem cells and hyaluronic acid hydrogel composite. Author: Park YB, Ha CW, Kim JA, Han WJ, Rhim JH, Lee HJ, Kim KJ, Park YG, Chung JY. Journal: Osteoarthritis Cartilage; 2017 Apr; 25(4):570-580. PubMed ID: 27789339. Abstract: OBJECTIVE: Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) have gained popularity as a promising cell source for regenerative medicine, but limited in vivo studies have reported cartilage repair. In addition, the roles of MSCs in cartilage repair are not well-understood. The purpose of this study was to investigate the feasibility of transplanting hUCB-MSCs and hyaluronic acid (HA) hydrogel composite to repair articular cartilage defects in a rabbit model and determine whether the transplanted cells persisted or disappeared from the defect site. DESIGN: Osteochondral defects were created in the trochlear grooves of the knees. The hUCB-MSCs and HA composite was transplanted into the defect of experimental knees. Control knees were transplanted by HA or left untreated. Animals were sacrificed at 8 and 16 weeks post-transplantation and additionally at 2 and 4 weeks to evaluate the fate of transplanted cells. The repair tissues were evaluated by gross, histological and immunohistochemical analysis. RESULTS: Transplanting hUCB-MSCs and HA composite resulted in overall superior cartilage repair tissue with better quality than HA alone or no treatment. Cellular architecture and collagen arrangement at 16 weeks were similar to those of surrounding normal articular cartilage tissue. Histological scores also revealed that cartilage repair in experimental knees was better than that in control knees. Immunohistochemical analysis with anti-human nuclear antibody confirmed that the transplanted MSCs disappeared gradually over time. CONCLUSION: Transplanting hUCB-MSCs and HA composite promote cartilage repair and interactions between hUCB-MSCs and host cells initiated by paracrine action may play an important role in cartilage repair.[Abstract] [Full Text] [Related] [New Search]