These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Nontoxic Formulations of Scintillation Nanocrystals for Use as X-ray Computed Tomography Contrast Agents.
    Author: Lee J, Choi S, Kim KH, Heng HG, Torregrosa-Allen SE, Ramsey BS, Elzey BD, Won YY.
    Journal: Bioconjug Chem; 2017 Jan 18; 28(1):171-182. PubMed ID: 27791362.
    Abstract:
    X-ray computed tomography (CT) is currently one of the most powerful, noninvasive, clinical in vivo imaging techniques, which has resulted from advances in both X-ray device and contrast enhancement technologies. The present study demonstrates, for the first time, that metal tungstates (such as CaWO4) are promising contrast agents for X-ray, radiation, and CT imaging, because of the high X-ray mass attenuation of tungsten (W). We have developed a method of formulation, in which CaWO4 (CWO) nanoparticles (NPs) are encapsulated within a biocompatible poly(ethylene glycol-b-d,l-lactic acid) (PEG-PLA) block copolymer (BCP) capsule. We show that these PEG-PLA-encapsulated CWO NPs (170 ± 10 nm hydrodynamic diameter) produce a higher CT contrast (by a factor of about 2) than commercial iodine-based radiocontrast agents (e.g., Iohexol) at identical molar concentrations of W or I atoms. PEG-PLA-coated CWO NPs are chemically stable and completely nontoxic. It was confirmed that the maximum tolerated dose (MTD) of this material in mice is significantly higher (250 ± 50 mg per kg body weight following a single intravenous (IV) administration) than, for instance, commercially available dextran-coated iron oxide nanoparticles that are currently used clinically as MRI contrast agents (MTD in mice ≈ 168 mg/kg per dose IV). IV-injected PEG-PLA/CWO NPs caused no histopathologic damage in major excretory organs (heart, liver, lungs, spleen, and kidney). When an IV dose of 100 mg/kg was given to mice, the blood circulation half-life was measured to be about 4 h, and more than 90% of the NPs were cleared from the mice within 24 h via the renal and hepatobiliary systems. When intratumorally administered, PEG-PLA-coated CWO NPs showed complete retention in a tumor-bearing mouse model (measurements were made up to 1 week). These results suggest that PEG-PLA-coated CWO NPs are promising materials for use in CT contrast.
    [Abstract] [Full Text] [Related] [New Search]