These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Baseline MAPK signaling activity confers intrinsic radioresistance to KRAS-mutant colorectal carcinoma cells by rapid upregulation of heterogeneous nuclear ribonucleoprotein K (hnRNP K).
    Author: Eder S, Arndt A, Lamkowski A, Daskalaki W, Rump A, Priller M, Genze F, Wardelmann E, Port M, Steinestel K.
    Journal: Cancer Lett; 2017 Jan 28; 385():160-167. PubMed ID: 27793696.
    Abstract:
    Heterogeneous nuclear ribonucleoprotein K (hnRNP K) is overexpressed in malignant tumors and involved in DNA damage response upon ionizing radiation (IR). Here, we investigate its role in radioresistance of colorectal carcinoma (CRC) and evaluate a pharmacological approach to enhance CRC radiosensitivity via downregulation of hnRNP K. We show that hnRNP K is overexpressed in CRC tissue specimens and upregulated in response to IR in vitro, which occurs faster in KRAS-mutant CRC cells. HnRNP K knockdown impairs cell survival, cell cycle progression and KRAS-dependent radioresistance and increases apoptosis. Using the chicken chorioallantoic membrane assay, a decrease in xenograft tumor growth and radioresistance upon hnRNP K depletion could be verified in vivo, and comparable effects were achieved by suppression of hnRNP K expression using the MEK inhibitor MEK162 (Binimetinib). In summary, KRAS-mutant CRC shows intrinsic radioresistance along with rapid upregulation of hnRNP K in response to IR that can effectively be targeted by MEK inhibition. Our results point towards a possible use of MAPK pathway inhibitors to decrease radioresistance of KRAS-mutant CRC via downregulation of hnRNP K.
    [Abstract] [Full Text] [Related] [New Search]