These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Metabolic Engineering of Raoultella ornithinolytica BF60 for Production of 2,5-Furandicarboxylic Acid from 5-Hydroxymethylfurfural.
    Author: Hossain GS, Yuan H, Li J, Shin HD, Wang M, Du G, Chen J, Liu L.
    Journal: Appl Environ Microbiol; 2017 Jan 01; 83(1):. PubMed ID: 27795308.
    Abstract:
    UNLABELLED: 2,5-Furandicarboxylic acid (FDCA) is an important renewable biotechnological building block because it serves as an environmentally friendly substitute for terephthalic acid in the production of polyesters. Currently, FDCA is produced mainly via chemical oxidation, which can cause severe environmental pollution. In this study, we developed an environmentally friendly process for the production of FDCA from 5-hydroxymethyl furfural (5-HMF) using a newly isolated strain, Raoultella ornithinolytica BF60. First, R. ornithinolytica BF60 was identified by screening and was isolated. Its maximal FDCA titer was 7.9 g/liter, and the maximal molar conversion ratio of 5-HMF to FDCA was 51.0% (mol/mol) under optimal conditions (100 mM 5-HMF, 45 g/liter whole-cell biocatalyst, 30°C, and 50 mM phosphate buffer [pH 8.0]). Next, dcaD, encoding dicarboxylic acid decarboxylase, was mutated to block FDCA degradation to furoic acid, thus increasing FDCA production to 9.2 g/liter. Subsequently, aldR, encoding aldehyde reductase, was mutated to prevent the catabolism of 5-HMF to HMF alcohol, further increasing the FDCA titer, to 11.3 g/liter. Finally, the gene encoding aldehyde dehydrogenase 1 was overexpressed. The FDCA titer increased to 13.9 g/liter, 1.7 times that of the wild-type strain, and the molar conversion ratio increased to 89.0%. IMPORTANCE: In this work, we developed an ecofriendly bioprocess for green production of FDCA in engineered R. ornithinolytica This report provides a starting point for further metabolic engineering aimed at a process for industrial production of FDCA using R. ornithinolytica.
    [Abstract] [Full Text] [Related] [New Search]