These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effect of L-pGlu-(1-benzyl)-l-His-l-Pro-NH2 against in-vitro and in-vivo models of cerebral ischemia and associated neurological disorders.
    Author: Rajput SK, Sharma AK, Meena CL, Pant AB, Jain R, Sharma SS.
    Journal: Biomed Pharmacother; 2016 Dec; 84():1256-1265. PubMed ID: 27810782.
    Abstract:
    Central nervous system plays a vital role in regulation of most of biological functions which are abnormally affected in various disorders including cerebral ischemia, Alzheimer's and Parkinson's (AD and PD) worldwide. Cerebral stroke is an extremely fatal and one of the least comprehensible neurological disorders due to limited availability of prospective clinical approaches and therapeutics. Since, some endogenous peptides like thyrotropin-releasing hormone have shown substantial neuroprotective potential, hence present study evaluates the newer thyrotropin-releasing hormone (TRH) analogue L-pGlu-(1-benzyl)-l-His-l-Pro-NH2 for its neuroprotective effects against oxygen glucose deprivation (OGD), glutamate and H2O2 induced injury in pheochromocytoma cell lines (PC-12 cells) and in-vivo ischemic injury in mice. Additionally, the treatment was further analyzed with respect to models of AD and PD in mice. Cerebral ischemia was induced by clamping both bilateral common carotid arteries for ten minutes. Treatment was administered to the mice five minute after restoration of blood supply to brain. Consequential changes in neurobehavioural, biochemical and histological parameters were assessed after a week. L-pGlu-(1-benzyl)-l-His-l-Pro-NH2 showed significant reduction in glutamate, H2O2 and OGD -induced cell death in concentration and time dependent manner. Moreover, L-pGlu-(1-benzyl)-l-His-l-Pro-NH2 resulted in a substantial reduction in CA1 (Cornus Ammonis 1) hippocampal neuronal cell death, inflammatory cytokines, TNF-α, IL-6 and oxidative stress in hippocampus. In addition, L-pGlu-(1-benzyl)-l-His-l-Pro-NH2 was found to be protective in two acute models of AD and PD as well these findings demonstrate the neuroprotective potential of L-pGlu-(1-benzyl)-l-His-l-Pro-NH2 in cerebral ischemia and other diseases, which may be mediated through reduction of excitotoxicity, oxidative stress and inflammation.
    [Abstract] [Full Text] [Related] [New Search]