These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Reactive electrophilic oxylipins trigger a heat stress-like response through HSFA1 transcription factors.
    Author: Muench M, Hsin CH, Ferber E, Berger S, Mueller MJ.
    Journal: J Exp Bot; 2016 Nov; 67(21):6139-6148. PubMed ID: 27811081.
    Abstract:
    Abiotic and biotic stresses are often characterized by an induction of reactive electrophile species (RES) such as the jasmonate 12-oxo-phytodienoic acid (OPDA) or the structurally related phytoprostanes. Previously, RES oxylipins have been shown massively to induce heat-shock-response (HSR) genes including HSP101 chaperones. Moreover, jasmonates have been reported to play a role in basal thermotolerance. We show that representative HSR marker genes are strongly induced by RES oxylipins through the four master regulator transcription factors HSFA1a, b, d, and e essential for short-term adaptation to heat stress in Arabidopsis. When compared with Arabidopsis seedlings treated at the optimal acclimation temperature of 37 °C, the exogenous application of RES oxylipins at 20 °C induced a much weaker induction of HSP101 at both the gene and protein expression levels which, however, was not sufficient to confer short-term acquired thermotolerance. Moreover, jasmonate-deficient mutant lines displayed a wild-type-like HSR and were not compromised in acquiring thermotolerance. Hence, the OPDA- and RES oxylipin-induced HSR is not sufficient to protect seedlings from severe heat stress but may help plants to cope better with stresses associated with protein unfolding by inducing a battery of chaperones in the absence of heat.
    [Abstract] [Full Text] [Related] [New Search]