These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Sparse representation-based ECG signal enhancement and QRS detection.
    Author: Zhou Y, Hu X, Tang Z, Ahn AC.
    Journal: Physiol Meas; 2016 Dec; 37(12):2093-2110. PubMed ID: 27811395.
    Abstract:
    Electrocardiogram (ECG) signal enhancement and QRS complex detection is a critical preprocessing step for further heart disease analysis and diagnosis. In this paper, we propose a sparse representation-based ECG signal enhancement and QRS complex detection algorithm. Unlike traditional Fourier or wavelet transform-based methods, which use fixed bases, the proposed algorithm models the ECG signal as the superposition of a few inner structures plus additive random noise, where these structures (referred to here as atoms) can be learned from the input signal or a training set. Using these atoms and their properties, we can accurately approximate the original ECG signal and remove the noise and other artifacts such as baseline wandering. Additionally, some of the atoms with larger kurtosis values can be modified and used as an indication function to detect and locate the QRS complexes in the enhanced ECG signals. To demonstrate the robustness and efficacy of the proposed algorithm, we compare it with several state-of-the-art ECG enhancement and QRS detection algorithms using both simulated and real-life ECG recordings.
    [Abstract] [Full Text] [Related] [New Search]