These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Comparative effects of chelating agents on distribution, excretion, and renal toxicity of inorganic mercury in rats. Author: Kojima S, Shimada H, Kiyozumi M. Journal: Res Commun Chem Pathol Pharmacol; 1989 Jun; 64(3):471-84. PubMed ID: 2781144. Abstract: The effects of three chelating agents, sodium N-benzyl-D-glucamine dithiocarbamate(NBG-DTC), 2,3-dimercaptopropanol(BAL), and D-penicillamine(D-PEN), on the distribution, excretion, and renal toxicity of inorganic mercury were compared in rats exposed to HgCl2. Rats were injected i.p. with 203HgCl2 (300 micrograms of Hg and 2 microCi of 203Hg/kg) and 30 min or 24 h later they were injected with a chelating agent (a quarter of an LD50). The injection of the chelating agents significantly enhanced the biliary and urinary excretions of mercury. BAL was the most effective for removal of mercury from the body at 30 min after mercury treatment. The extent of enhancing effect of the chelating agents for removal of mercury at 24 h after mercury was in the order NBG-DTC = BAL greater than D-PEN. The injection of BAL at 24 h after mercury treatment caused the redistribution of mercury to the heart and lung. NBG-DTC did not result in the redistribution of mercury to the heart, lung, and brain. Urinary excretion of protein and AST significantly increased 24-48 h after mercury treatment and decreased to the control values 72 h after mercury. The injection of the chelating agents at 30 min after mercury treatment significantly decreased the urinary excretion of protein and AST. In rats pretreated with mercury 24 h earlier, the chelating agents significantly decreased the urinary protein at 48 h after mercury treatment, but did not decrease the urinary AST. The results of this study indicate that the chelating agents are effective in removing mercury from the body, resulting in the protective effect against the mercury-induced renal damage.[Abstract] [Full Text] [Related] [New Search]