These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Identification of anthocyanin biosynthesis related microRNAs in a distinctive Chinese radish (Raphanus sativus L.) by high-throughput sequencing.
    Author: Sun Y, Qiu Y, Duan M, Wang J, Zhang X, Wang H, Song J, Li X.
    Journal: Mol Genet Genomics; 2017 Feb; 292(1):215-229. PubMed ID: 27817120.
    Abstract:
    Anthocyanins are widely distributed water-soluble phytochemical pigments belonging to the flavonoid group. To date, limited knowledge is available about the regulatory roles of miRNAs in anthocyanin biosynthesis in plants. To identify the miRNAs associated with anthocyanin biosynthesis in radish, five small RNA (sRNA) libraries constructed from 'Xinlimei' radish roots at 11, 21, 44, 56 and 73 days (d) were examined using high-throughput sequencing technology. A total of 102.02 million (M) clean reads were generated, from which 483 known and 1415 novel miRNAs were identified. Combined with target prediction and annotation, 72 differentially expressed miRNAs (52 known and 20 novel miRNAs) were more likely to participate in anthocyanin biosynthesis. Several target genes for these miRNAs encode a few transcription factors, including Myb domain (MYB), basic helix-loop-helix (bHLH), WD40 repeat, squamosa promoter binding protein like (SPL), auxin response factor (ARF), ethylene insensitive 3 (EIN3), WRKY and MADS-box proteins. Furthermore, the expression patterns of some anthocyanin biosynthesis related miRNAs and their corresponding targets were validated by RT-qPCR. Based on the characterization of anthocyanin biosynthesis related miRNAs and their target genes, a putative miRNA-target module regulating anthocyanin biosynthesis was proposed. This study represents the first genome-wide identification of miRNAs associated with anthocyanin biosynthesis in radish, and provides insights into the molecular mechanisms underlying regulation of anthocyanin biosynthesis in radish and other crops.
    [Abstract] [Full Text] [Related] [New Search]