These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Dendropanax morbifera Léveille extract ameliorates cadmium-induced impairment in memory and hippocampal neurogenesis in rats.
    Author: Kim W, Yim HS, Yoo DY, Jung HY, Kim JW, Choi JH, Yoon YS, Kim DW, Hwang IK.
    Journal: BMC Complement Altern Med; 2016 Nov 09; 16(1):452. PubMed ID: 27829466.
    Abstract:
    BACKGROUND: Cadmium leads to learning and memory impairment. Dendropanax morbifera Léveille stem extract (DMS) reduces cadmium-induced oxidative stress in the hippocampus. We investigated the effects of DMS on cadmium-induced impairments in memory in rats. METHODS: Cadmium (2 mg/kg), with or without DMS (100 mg/kg), was orally administered to 7-week-old Sprague-Dawley rats for 28 days. Galantamine (5 mg/kg), an acetylcholinesterase inhibitor, was intraperitoneally administered as a positive control. A novel-object recognition test was conducted 2 h after the final administration. Cell proliferation and neuroblast differentiation were assessed by immunohistochemistry for Ki67 and doublecortin, respectively. Acetylcholinesterase activity in the synaptosomes of the hippocampus was also measured based on the formation of 5,5'-dithio-bis-acid nitrobenzoic acid. RESULTS: An increase in the preferential exploration time of new objects was observed in both vehicle-treated and cadmium-treated rats. In addition, DMS administration increased cell proliferation and neuroblast differentiation in the dentate gyrus of vehicle-treated and cadmium-treated rats. Acetylcholinesterase activity in the hippocampal synaptosomes was also significantly higher in the DMS-treated group than in the vehicle-treated group. The effect of DMS on cadmium-induced memory impairment and cell proliferation in the hippocampus was comparable to that of galantamine. CONCLUSIONS: These results suggest that DMS ameliorates cadmium-induced memory impairment via increase in cell proliferation, neuroblast differentiation, and acetylcholinesterase activity in the hippocampus. The consumption of DMS may reduce cadmium-induced neurotoxicity in animals or humans.
    [Abstract] [Full Text] [Related] [New Search]