These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Different mutations responsible for the elevated sister-chromatid exchange frequencies in Bloom syndrome and X-irradiated B-lymphoblastoid cell lines originating from acute leukemia.
    Author: Shiraishi Y, Taguchi T, Ozawa M, Bamezai R.
    Journal: Mutat Res; 1989 Apr; 211(2):273-8. PubMed ID: 2784538.
    Abstract:
    Cell hybridization and co-cultivation protocols have been used to determine whether the increased rates of sister-chromatid exchanges (SCEs) exhibited by Bloom syndrome (BS) and a human mutant cell line (CCRF-SB-T1), originating from an X-irradiated acute leukemia-derived B-lymphoblastoid cell line, have the same or different bases. Cell fusion of CCRF-SB-T1 with each of 4 different BS B-lymphoblastoid cell lines (LCLs), retaining a high-SCE character, exhibited low (normal level) numbers of SCEs, signifying complementation. Co-cultivation of CCRF-SB-T1 and BS B-LCLs also resulted in a significant reduction in SCE level, from 70 to 35, in BS cells, lowered the BrdU concentrations necessary for sister-chromatid differential staining (SCD) from 15 micrograms/ml (0.05 mM) to 2.0 micrograms/ml (0.01 mM) and resulted in a completely normal level of SCE in CCRF-SB-T1 cells. This strongly suggests that the defects in the 2 cell types are different. In the assay of cell extracts, the 4 BS cell lines appear to have lost thymidylate (TMP) synthetase activity (about 50% reduction from that of normal cells), whereas CCRF-SB-T1 cells show a 20% increase of TMP synthetase activity compared to normal cells.
    [Abstract] [Full Text] [Related] [New Search]