These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Oligomerization of Hmo1 mediated by box A is essential for DNA binding in vitro and in vivo. Author: Kasahara K, Higashino A, Unzai S, Yoshikawa H, Kokubo T. Journal: Genes Cells; 2016 Dec; 21(12):1333-1352. PubMed ID: 27860073. Abstract: Hmo1, a member of HMGB family proteins in Saccharomyces cerevisiae, binds to and regulates the transcription of genes encoding ribosomal RNA and ribosomal proteins. The functional motifs of Hmo1 include two HMG-like motifs, box A and box B, and a C-terminal tail. To elucidate the molecular roles of the HMG-like boxes in DNA binding in vivo, we analyzed the DNA-binding activity of various Hmo1 mutants using ChIP or reporter assays that enabled us to conveniently detect Hmo1 binding to the promoter of RPS5, a major target gene of Hmo1. Our mutational analyses showed that box B is a bona fide DNA-binding motif and that it also plays other important roles in cell growth. However, box A, especially its first α-helix, contributes to DNA binding of Hmo1 by inducing self-assembly of Hmo1. Intriguingly, box A mediated formation of oligomers of more than two proteins on DNA in vivo. Furthermore, duplication of the box B partially alleviates the requirement for box A. These findings suggest that the principal role of box A is to assemble multiple box B in the appropriate orientation, thereby stabilizing the binding of Hmo1 to DNA and nucleating specific chromosomal architecture on its target genes.[Abstract] [Full Text] [Related] [New Search]