These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mechanism of lipid-lowering action of the dipeptidyl peptidase-4 inhibitor, anagliptin, in low-density lipoprotein receptor-deficient mice.
    Author: Yano W, Inoue N, Ito S, Itou T, Yasumura M, Yoshinaka Y, Hagita S, Goto M, Nakagawa T, Inoue K, Tanabe S, Kaku K.
    Journal: J Diabetes Investig; 2017 Mar; 8(2):155-160. PubMed ID: 27860391.
    Abstract:
    AIMS/INTRODUCTION: Dipeptidyl peptidase-4 inhibitors are used for treatment of patients with type 2 diabetes. In addition to glycemic control, these agents showed beneficial effects on lipid metabolism in clinical trials. However, the mechanism underlying the lipid-lowering effect of dipeptidyl peptidase-4 inhibitors remains unclear. Here, we investigated the lipid-lowering efficacy of anagliptin in a hyperlipidemic animal model, and examined the mechanism of action. MATERIALS AND METHODS: Male low-density lipoprotein receptor-deficient mice were administered 0.3% anagliptin in their diet. Plasma lipid levels were assayed and lipoprotein profile was analyzed using high-performance liquid chromatography. Hepatic gene expression was examined by deoxyribonucleic acid microarray and quantitative polymerase chain reaction analyses. Sterol regulatory element-binding protein transactivation assay was carried out in vitro. RESULTS: Anagliptin treatment significantly decreased the plasma total cholesterol (14% reduction, P < 0.01) and triglyceride levels (27% reduction, P < 0.01). Both low-density lipoprotein cholesterol and very low-density lipoprotein cholesterol were also decreased significantly by anagliptin treatment. Sterol regulatory element-binding protein-2 messenger ribonucleic acid expression level was significantly decreased at night in anagliptin-treated mice (15% reduction, P < 0.05). Anagliptin significantly suppressed sterol regulatory element-binding protein activity in HepG2 cells (21% decrease, P < 0.001). CONCLUSIONS: The results presented here showed that the dipeptidyl peptidase-4 inhibitor, anagliptin, exhibited a lipid-lowering effect in a hyperlipidemic animal model, and suggested that the downregulation of hepatic lipid synthesis was involved in the effect. Anagliptin might have beneficial effects on lipid metabolism in addition to a glucose-lowering effect.
    [Abstract] [Full Text] [Related] [New Search]