These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mitochondrial Superoxide Dismutase and Yap1p Act as a Signaling Module Contributing to Ethanol Tolerance of the Yeast Saccharomyces cerevisiae. Author: Zyrina AN, Smirnova EA, Markova OV, Severin FF, Knorre DA. Journal: Appl Environ Microbiol; 2017 Feb 01; 83(3):. PubMed ID: 27864171. Abstract: UNLABELLED: There are two superoxide dismutases in the yeast Saccharomyces cerevisiae-cytoplasmic and mitochondrial enzymes. Inactivation of the cytoplasmic enzyme, Sod1p, renders the cells sensitive to a variety of stresses, while inactivation of the mitochondrial isoform, Sod2p, typically has a weaker effect. One exception is ethanol-induced stress. Here we studied the role of Sod2p in ethanol tolerance of yeast. First, we found that repression of SOD2 prevents ethanol-induced relocalization of yeast hydrogen peroxide-sensing transcription factor Yap1p, one of the key stress resistance proteins. In agreement with this, the levels of Trx2p and Gsh1p, proteins encoded by Yap1 target genes, were decreased in the absence of Sod2p. Analysis of the ethanol sensitivities of the cells lacking Sod2p, Yap1p, or both indicated that the two proteins act in the same pathway. Moreover, preconditioning with hydrogen peroxide restored the ethanol resistance of yeast cells with repressed SOD2 Interestingly, we found that mitochondrion-to-nucleus signaling by Rtg proteins antagonizes Yap1p activation. Together, our data suggest that hydrogen peroxide produced by Sod2p activates Yap1p and thus plays a signaling role in ethanol tolerance. IMPORTANCE: Baker's yeast harbors multiple systems that ensure tolerance to high concentrations of ethanol. Still, the role of mitochondria under severe ethanol stress in yeast is not completely clear. Our study revealed a signaling function of mitochondria which contributes significantly to the ethanol tolerance of yeast cells. We found that mitochondrial superoxide dismutase Sod2p and cytoplasmic hydrogen peroxide sensor Yap1p act together as a module of the mitochondrion-to-nucleus signaling pathway. We also report cross talk between this pathway and the conventional retrograde signaling cascade activated by dysfunctional mitochondria.[Abstract] [Full Text] [Related] [New Search]