These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mitigating effects of ex situ application of rice straw on CH4 and N2O emissions from paddy-upland coexisting system. Author: Wang W, Wu X, Chen A, Xie X, Wang Y, Yin C. Journal: Sci Rep; 2016 Nov 21; 6():37402. PubMed ID: 27869209. Abstract: The in situ application of rice straw enhances CH4 emissions by a large margin. The ex situ application of rice straw in uplands, however, may mitigate total global warming potential (GWP) of CH4 and N2O emissions from paddy-upland coexisting systems. To evaluate the efficiency of this practice, two field trials were conducted in rice-rice-fallow and maize-rape cropping systems, respectively. Year-round measurements of CH4 and N2O emissions were conducted to evaluate the system-scaled GWP. The results showed that CH4 accounted for more than 98% of GWP in paddy. Straw removal from paddy decreased 44.7% (302.1 kg ha-1 yr-1) of CH4 emissions and 51.2% (0.31 kg ha-1 yr-1) of N2O emissions, thus decreased 44.8% (7693 kg CO2-eqv ha-1 yr-1) of annual GWP. N2O accounted for almost 100% of GWP in upland. Straw application in upland had insignificant effects on CH4 and N2O emissions, which increased GWP only by 91 kg CO2-eqv ha-1 yr-1. So, the transfer of straw from paddy to upland could decrease GWP by 7602 kg CO2-eqv ha-1 yr-1. Moreover, straw retention during late rice season contributed to 88.2% of annual GWP increment. It is recommended to transfer early rice straw to upland considering GWP mitigation, nutrient recycling and labor cost.[Abstract] [Full Text] [Related] [New Search]