These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Decolourisation of Acid orange 7 in a microbial fuel cell with a laccase-based biocathode: Influence of mitigating pH changes in the cathode chamber. Author: Mani P, Keshavarz T, Chandra TS, Kyazze G. Journal: Enzyme Microb Technol; 2017 Jan; 96():170-176. PubMed ID: 27871379. Abstract: Biocathodes may be a suitable replacement of platinum in microbial fuel cells (MFCs) if the cost of MFCs is to be reduced. However, the use of enzymes as bio-cathodes is fraught with loss of activity as time progresses. A possible cause of this loss in activity might be pH increase in the cathode as pH gradients in MFCs are well known. This pH increase is however, accompanied by simultaneous increase in salinity; therefore salinity may be a confounding variable. This study investigated various ways of mitigating pH changes in the cathode of MFCs and their effect on laccase activity and decolourisation of a model azo dye Acid orange 7 in the anode chamber. Experiments were run with catholyte pH automatically controlled via feedback control or by using acetate buffers (pH 4.5) of various strength (100mM and 200mM), with CMI7000 as the cation exchange membrane. A comparison was also made between use of CMI7000 and Nafion 117 as the transport properties of cations for both membranes (hence their potential effects on pH changes in the cathode) are different. Results show that using Nafion 117 membrane limits salinity and pH changes in the cathode (100mM acetate buffer as catholyte) leading to prolonged laccase activity and faster AO7 decolourisation compared to using CMI7000 as a membrane; similarly automatic pH control in the cathode chamber was found to be better than using 200mM acetate buffer. It is suggested that while pH control in the cathode chamber is important, it does not guarantee sustained laccase activity; as salinity increases affect the activity and it could be mitigated using a cation selective membrane.[Abstract] [Full Text] [Related] [New Search]