These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Influence of phosphorous fertilization on copper phytoextraction and antioxidant defenses in castor bean (Ricinus communis L.). Author: Huang G, Rizwan MS, Ren C, Guo G, Fu Q, Zhu J, Hu H. Journal: Environ Sci Pollut Res Int; 2018 Jan; 25(1):115-123. PubMed ID: 27882491. Abstract: Application of fertilizers to supply appropriate nutrients has become an essential agricultural strategy for enhancing the efficiency of phytoremediation in heavy metal contaminated soils. The present study was conducted to investigate the beneficial effects of three types of phosphate fertilizers (i.e., oxalic acid-activated phosphate rock (APR), Ca(H2PO4)2, and NaH2PO4) in the range of 0-600 mg P kg-1 soil, on castor bean growth, antioxidants [antioxidative enzymes and glutathione (GSH)], and Cu uptake. Results showed that with the addition of phosphorus fertilizers, the dry weight of castor bean and the Cu concentration in roots increased significantly, resulting in increased Cu extraction. The phosphorus concentration in both shoots and roots was increased as compared with the control, and the Ca(H2PO4)2 treatment had the greatest effect. Application of APR, NaH2PO4, and Ca(H2PO4)2 reduced the malondialdehyde (MDA) content, and the activity of the two antioxidant enzymes superoxide dismustase (SOD, EC 1.15.1.1) and catalase (CAT, EC 1.11.1.6) in the leaves of castor bean. GSH concentration in leaves increased with the increasing levels of phosphorus applied to soil as well as the accumulation of phosphorus in shoots, compared to the control. These results demonstrated that the addition of phosphorus fertilizers can enhance the resistance of castor bean to Cu and increase the Cu extraction efficiency of the plant from contaminated soils.[Abstract] [Full Text] [Related] [New Search]