These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Executive control and working memory are involved in sub-second repetitive motor timing. Author: Holm L, Karampela O, Ullén F, Madison G. Journal: Exp Brain Res; 2017 Mar; 235(3):787-798. PubMed ID: 27885405. Abstract: The nature of the relationship between timing and cognition remains poorly understood. Cognitive control is known to be involved in discrete timing tasks involving durations above 1 s, but has not yet been demonstrated for repetitive motor timing below 1 s. We examined the latter in two continuation tapping experiments, by varying the cognitive load in a concurrent task. In Experiment 1, participants repeated a fixed three finger sequence (low executive load) or a pseudorandom sequence (high load) with either 524-, 733-, 1024- or 1431-ms inter-onset intervals (IOIs). High load increased timing variability for 524 and 733-ms IOIs but not for the longer IOIs. Experiment 2 attempted to replicate this finding for a concurrent memory task. Participants retained three letters (low working memory load) or seven letters (high load) while producing intervals (524- and 733-ms IOIs) with a drum stick. High load increased timing variability for both IOIs. Taken together, the experiments demonstrate that cognitive control processes influence sub-second repetitive motor timing.[Abstract] [Full Text] [Related] [New Search]