These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Protective Effect of the Sulfated Agaran Isolated from the Red Seaweed Laurencia aldingensis Against Toxic Effects of the Venom of the Snake, Lachesis muta.
    Author: da Silva AC, Ferreira LG, Duarte ME, Fujii MT, Sanchez EF, Noseda MD, Fuly AL.
    Journal: Mar Biotechnol (NY); 2016 Dec; 18(6):619-629. PubMed ID: 27888371.
    Abstract:
    Snakebite is a serious occupational hazard affecting mainly rural populations of tropical and subtropical developing countries. Lachesis muta (Bushmaster) bites are extremely serious but are rarely reported in the literature. Bushmaster envenomings are characterized by intense local pain, edema, neurotoxicity, hypotension, local hemorrhage, and dramatic systemic alterations. Antivenom treatment has regularly been used for more than a century; however, it fails to neutralize local tissue damage and hemorrhage, leading to morbidity or disabilities in victims. Thus, the production and clinical use of antivenom must be improved. The present work characterizes, for the first time, a sulfated polysaccharide from the red seaweed, Laurencia aldingensis, including its neutralizing effect on some toxic activities of L. muta venom. Chemical and spectroscopic analyses showed that L. aldingensis produces sulfated agarans with the A-units partially C-2 sulfated or 6-O-methoxylated presetting the B-units in the cyclized (3,6-anhydro-α-L-galactose) or in the non-cyclized form (α-L-galactose). The latter is significantly substituted by sulfate groups on C-6. In vitro and in vivo assays showed that this sulfated agaran inhibited hemolysis, coagulation, proteolysis, edema, and hemorrhage of L. muta venom. Neutralization of hemorrhagic activity was also observed when the agaran was administered by different routes and after or before the venom injection. Furthermore, the agaran blocked the edema caused by a phospholipase A2 isolated from the L. muta venom. Experimental evidence therefore indicates that the sulfated agaran of L. aldingensis has potential to aid antivenom therapy of accidents caused by L. muta venom and may help to develop more effective antivenom treatments of snake bites in general.
    [Abstract] [Full Text] [Related] [New Search]