These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Bioavailable phosphorus (P) reduction is less than mobile P immobilization in lake sediment for eutrophication control by inactivating agents. Author: Wang C, He R, Wu Y, Lürling M, Cai H, Jiang HL, Liu X. Journal: Water Res; 2017 Feb 01; 109():196-206. PubMed ID: 27888776. Abstract: Phosphorus (P) immobilization by inactivating agents in the sediment of eutrophic lakes to reduce immediately available P in lake water is often crucial for mitigating nuisance eutrophication symptoms, such as cyanobacterial blooms. Macrophytes and phytoplankton, however, can directly utilize P from the sediment for growth. Accordingly, a comprehensive analysis of the P bioavailability in lake sediment amended with two promising P-inactivation agents, namely Phoslock® and drinking water treatment residue (DWTR), was investigated in both short- and long-term studies (20 and 180 d). Phosphorus-availability was assessed using six chemical extraction methods and Hydrilla verticillata and Microcystis aeruginosa growth tests. The results showed that Phoslock® and DWTR significantly reduced mobile P (NH4Cl and Na2S2O4/NaHCO3 extractable P) in lake sediment, while P bioavailability that was assessed by different methods showed considerable deviations. Interestingly, appropriate bioavailable P chemical extraction methods were determined based on linear correlation analysis, and further comparison indicated that reduction of bioavailable P by DWTR (<55% for macrophyte available P) and Phoslock® (<17% for cyanobacteria available P) were clearly less than the mobile P immobilization (>75%) at recommended dosages, which was probably caused by the capability of macrophyte and cyanobacteria to utilize various fractions of P (except the residual P) in amended sediment under proper illumination. Therefore, DWTR and Phoslock® can effectively reduce P release from lake sediment, but the potential bioavailable P may pose uncertainties for eutrophication control in lakes that typically have regular sediment re-suspension. Overall, an evaluation of the bioavailable P pool in the lake ecosystem should be essential for successful lake geo-engineering.[Abstract] [Full Text] [Related] [New Search]