These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The putative role of MALDI-MSI in the study of Membranous Nephropathy. Author: Smith A, L'Imperio V, Ajello E, Ferrario F, Mosele N, Stella M, Galli M, Chinello C, Pieruzzi F, Spasovski G, Pagni F, Magni F. Journal: Biochim Biophys Acta Proteins Proteom; 2017 Jul; 1865(7):865-874. PubMed ID: 27890680. Abstract: Membranous Nephropathy (MN) is an immunocomplex mediated renal disease that represents one of the most frequent glomerulopathies worldwide. This glomerular disease can manifest as primary (idiopathic) or secondary and this distinction is crucial when choosing the most appropriate course of treatment. In secondary cases, the best strategy involves treating the underlying disease, whereas in primary forms, the identification of confirmatory markers of the idiopathic etiology underlining the process is requested by clinicians. Among those currently reported, the positivity to circulating antigens (PLA2R, IgG4 and THSD7A) was demonstrated in approximately 75% of iMN patients, while approximately 1 in 4 patients with iMN still lack a putative diagnostic marker. Ultimately, the discovery of biomarkers to help further stratify these two different forms of glomerulopathy seems mandatory. Here, MALDI-MSI was applied to FFPE renal biopsies from histologically diagnosed primary and secondary MN patients (n=20) in order to detect alterations in their tissue proteome. MALDI-MSI was able to generate molecular signatures of primary and secondary MN, with one particular signal (m/z 1459), identified as Serine/threonine-protein kinase MRCK gamma, being over-expressed in the glomeruli of primary MN patients with respect to secondary MN. Furthermore, a number of signals that could differentiate the different forms of iMN that were positive to PLA2R or IgG4 were detected, as well as a further set of signals (m/z 1094, 1116, 1381 and 1459) that could distinguish these patients from those who were negative to both. These signals could potentially represent future targets for the further stratification of iMN patients. This article is part of a Special Issue entitled: MALDI Imaging, edited by Dr. Corinna Henkel and Prof. Peter Hoffmann.[Abstract] [Full Text] [Related] [New Search]