These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Increased VLDL-TG Fatty Acid Storage in Skeletal Muscle in Men With Type 2 Diabetes.
    Author: Andersen IR, Søndergaard E, Sørensen LP, Nellemann B, Gormsen LC, Jensen MD, Nielsen S.
    Journal: J Clin Endocrinol Metab; 2017 Mar 01; 102(3):831-839. PubMed ID: 27898284.
    Abstract:
    CONTEXT: Lipoprotein lipase (LPL) activity is considered the rate-limiting step of very-low-density-lipoprotein triglycerides (VLDL-TG) tissue storage, and has been suggested to relate to the development of obesity as well as insulin resistance and type 2 diabetes. OBJECTIVE: The objective of the study was to assess the relationship between the quantitative storage of VLDL-TG fatty acids and LPL activity and other storage factors in muscle and adipose tissue. In addition, we examine whether such relations were influenced by type 2 diabetes. DESIGN: We recruited 23 men (12 with type 2 diabetes, 11 nondiabetic) matched for age and body mass index. Postabsorptive VLDL-TG muscle and subcutaneous adipose tissue (abdominal and leg) quantitative storage was measured using tissue biopsies in combination with a primed-constant infusion of ex vivo triolein labeled [1-14C]VLDL-TG and a bolus infusion of ex vivo triolein labeled [9,10-3H]VLDL-TG. Biopsies were analyzed for LPL activity and cellular storage factors. RESULTS: VLDL-TG storage rate was significantly greater in men with type 2 diabetes compared with nondiabetic men in muscle tissue (P = 0.02). We found no significant relationship between VLDL-TG storage rate and LPL activity or other storage factors in muscle or adipose tissue. However, LPL activity correlated with fractional VLDL-TG storage in abdominal fat (P = 0.04). CONCLUSIONS: Men with type 2 diabetes have increased VLDL-TG storage in muscle tissue, potentially contributing to increased intramyocellular triglyceride and ectopic lipid deposition. Neither muscle nor adipose tissue storage rates were related to LPL activity. This argues against LPL as a rate-limiting step in the postabsorptive quantitative storage of VLDL-TG.
    [Abstract] [Full Text] [Related] [New Search]