These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mining the Cicer arietinum genome for the mildew locus O (Mlo) gene family and comparative evolutionary analysis of the Mlo genes from Medicago truncatula and some other plant species.
    Author: Deshmukh R, Singh VK, Singh BD.
    Journal: J Plant Res; 2017 Mar; 130(2):239-253. PubMed ID: 27900493.
    Abstract:
    The mildew locus O (Mlo) gene family is ubiquitous in land plants. Some members of this gene family are involved in negative regulation of powdery mildew resistance, while others are involved in several other biological functions. Mlo proteins have characteristic seven transmembrane domains and a calmodulin-binding domain at their C-termini, and are associated with plasma membrane. The Mlo gene family has been studied in several economically important cereals, but little information is available on this gene family in the important legumes, Medicago truncatula Gaertn. and Cicer arietinum L. We carried out a comprehensive and comparative investigation of the Mlo gene family in these two species using the genome sequences available at the M. truncatula genome database (Mt v4.0) and NCBI (C. arietinum). A genome-wide homology-based search using Arabidopsis Mlo proteins as query identified 16 MtMlo (M. truncatula Mlo) and 14 CarMlo (C. arietinum Mlo) genes. The MtMlo and CarMlo genes had comparable gene structure, protein sequence and topology. Their chromosomal locations indicated the occurrence of extensive reorganization in the genomes of the two species after their divergence from the common ancestor. A multiple sequence alignment of 53 Mlo proteins from these two and several other species showed a highly conserved sequence block of seven amino acids, viz., L-ETPTW, towards their N-termini. The evolutionary phylogenetic analysis grouped the MtMlo and CarMlo members into four clusters, and most of the MtMlo and CarMlo members formed one-to-one ortholog pairs. The ka/ks analyses indicated that the MtMlo and CarMlo genes are subjected to intense purifying selection.
    [Abstract] [Full Text] [Related] [New Search]