These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Direct measurement of changes in intracellular calcium transients during hypoxia, ischemia, and reperfusion of the intact mammalian heart.
    Author: Kihara Y, Grossman W, Morgan JP.
    Journal: Circ Res; 1989 Oct; 65(4):1029-44. PubMed ID: 2791218.
    Abstract:
    In studies of ischemia and reperfusion, a major experimental problem has been the inability to measure intracellular ionized calcium ([Ca2+]i) in the intact heart. We have developed a new approach in which the bioluminescent calcium indicator aequorin is used to measure [Ca2+]i in the isolated, coronary-perfused ferret heart. Aequorin is loaded into subepicardial myocytes of the left ventricle, and the signals are recorded simultaneously along with isovolumic left ventricular (LV) pressure at a constant pacing rate. This system shows 1) no attenuation or change of time course of LV pressure development or coronary perfusion pressure after aequorin loading; 2) consistent responses to physiological interventions and drugs; 3) individual aequorin and pressure signals that do not require signal averaging for analysis; and 4) [Ca2+]i levels comparable with those reported in tissue or isolated myocyte cell preparations. During 5 minutes of hypoxia, diastolic [Ca2+]i and LV diastolic pressure increased while the systolic values of both [Ca2+]i and pressure decreased. The peak-to-peak systolic [Ca2+]i versus LV isovolumic pressure relation remained close to the control curve. In contrast, during 3 minutes of global ischemia, LV systolic and diastolic pressures fell rapidly, while [Ca2+]i increased substantially. The [Ca2+]i versus pressure relations for both systole and diastole shifted to the right, indicating desensitization of the contractile apparatus to [Ca2+]i. These results provide evidence that different primary mechanisms determine the systolic and diastolic responses to acute hypoxia versus ischemia. During hypoxia, changes in [Ca2+]i handling probably play a major role, while during ischemia, changes in the Ca2+ sensitivity of the myofilaments appear to be of primary importance in the modulation of contractile dysfunction.
    [Abstract] [Full Text] [Related] [New Search]