These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Regulation of skeletal muscle insulin-stimulated signaling through the MEK-REDD1-mTOR axis.
    Author: Dungan CM, Williamson DL.
    Journal: Biochem Biophys Res Commun; 2017 Jan 22; 482(4):1067-1072. PubMed ID: 27913296.
    Abstract:
    Recent findings in adipocytes suggest that mitogen-activated protein kinase (MAPK)/extracellular-regulated signaling kinase (ERK) kinase 1/2 (MEK1/2) signaling regulates regulated in development and DNA damage 1 (REDD1) protein expression. Similarly, our previous work show that a lack of REDD1 protein expression, and associated hyperactive basal mechanistic target of rapamycin (mTOR) signaling, limits skeletal muscle's response to insulin. Therefore, we sought to determine: 1) if MEK1/2 inhibition is sufficient to reduce REDD1 protein expression and subsequently insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation via negative feedback of hyperactive mTOR in REDD1 wild-type (WT) mice and 2) if rapamycin-mediated mTOR inhibition is sufficient to improve IRS-1 tyrosine phosphorylation in REDD1 knockout (KO) mice. REDD1 WT mice were injected with 10 mg/kg BW of the MEK1/2 non-competitive inhibitor, PD184352, 3 h prior to acute insulin treatment. In separate studies, REDD1 KO mice were injected with 5 mg/kg BW of the mTOR inhibitor, rapamycin, 3 h prior to acute insulin treatment. Following the inhibitor treatment period, markers of insulin signaling activation (IRS-1 Y1222, MEK1/2 S217/221, ERK1/2 T202/Y204), REDD1, and mTOR signaling activation (S6K1 T389, rpS6 S240/244) were examined in skeletal muscle collected before and after a 10 min insulin treatment. PD184352 treatment reduced MEK/ERK phosphorylation and REDD1 protein expression, independent of insulin. This reduction in REDD1 protein expression was associated with elevated basal S6K1 and rpS6 phosphorylation and reduced insulin stimulated IRS-1 phosphorylation. Conversely, rapamycin inhibited S6K1 and rpS6 activation, and significantly improved insulin -stimulated activation of IRS-1 and MEK1/2 in KO mice. These data support that REDD1 is required for normal insulin-stimulated signaling, and that a subtle balance exists between MEK1/2, REDD1, and mTOR for the proper regulation of insulin signaling.
    [Abstract] [Full Text] [Related] [New Search]