These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Keeping still doesn't "make sense": examining a role for movement variability by stabilizing the arm during a postural control task. Author: Murnaghan CD, Carpenter MG, Chua R, Inglis JT. Journal: J Neurophysiol; 2017 Feb 01; 117(2):846-852. PubMed ID: 27927789. Abstract: Small-amplitude, higher frequency oscillations of the body or limb are typically observed when humans attempt to maintain the position of a body or limb in space. Recent investigations have suggested that these involuntary movements of the body during stance could be used as an exploratory means of acquiring sensory information. In the present study, we wanted to determine whether a similar phenomenon would be observed in an upper limb postural task that does not involve whole body postural control. Participants were placed in a supine position with the arm pointing vertically and were asked to maintain the position of the limb in space with and without visual feedback. The wrist was attached to an apparatus that allowed the experimenter to stabilize or "lock" movements of the arm without the participants' awareness. When participants were "locked," the forces recorded predicted greater accelerations than those observed when the arm was freely moving with and without visual feedback. From unlocked to locked, angular accelerations increased in the eyes-closed condition and when participants were provided visual feedback of arm angular displacements. Irrespective of their origin, small displacements of the limb may be used as an exploratory means of acquiring sensory information from the surrounding environment.NEW & NOTEWORTHY The role of movement variability during a static limb position task is currently unknown. We tested whether variability remains in the absence of sensory-based error with an apparatus that stabilized the limb without the participant's knowledge during a static postural task. Increased forces observed during arm stabilization predicted movements greater than those observed when not externally stabilized. These results suggest movement variability during static postures could facilitate the gathering of sensory information from the surrounding environment.[Abstract] [Full Text] [Related] [New Search]