These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: In vitro evaluation of electrospun silk fibroin/nano-hydroxyapatite/BMP-2 scaffolds for bone regeneration. Author: Niu B, Li B, Gu Y, Shen X, Liu Y, Chen L. Journal: J Biomater Sci Polym Ed; 2017 Feb; 28(3):257-270. PubMed ID: 27931176. Abstract: Bone tissue engineering by using osteoinductive scaffolds seeded with stem cells to promote bone extracellular matrix (ECM) production and remodeling has evolved into a promising approach for bone repair and regeneration. In order to mimic the ECM of bone tissue structurally and compositionally, nanofibrous silk fibroin (SF) scaffolds containing hydroxyapatite (HAP) nanoparticles and bone morphogenetic protein 2 (BMP-2) were fabricated in this study using electrospinning technique. The microstructure, mechanical property, biocompatibility, and osteogenic characteristics were examined. It was found that the HAP nanoparticles were successfully incorporated in the SF nanofibers (diameter, 200-500 nm). The mechanical properties of SF/HAP/BMP-2 composite scaffolds increased with HAP content when it was less than 20 wt%, after which the mechanical properties dropped as HAP content increased. Cell culture tests using bone marrow mesenchymal stem cells (BMSCs) showed that the scaffolds had good biocompatibility and promoted the osteogenic differentiation of BMSCs. Therefore, the electrospun SF/HAP/BMP-2 scaffolds may serve as a promising biomaterial for bone tissue engineering.[Abstract] [Full Text] [Related] [New Search]