These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: microRNA-145 modulates epithelial-mesenchymal transition and suppresses proliferation, migration and invasion by targeting SIP1 in human cervical cancer cells. Author: Sathyanarayanan A, Chandrasekaran KS, Karunagaran D. Journal: Cell Oncol (Dordr); 2017 Apr; 40(2):119-131. PubMed ID: 27933466. Abstract: PURPOSE: Previously, it has been reported that microRNA-145 (miR-145) is lowly expressed in human cervical cancers and that its putative tumour suppressive role may be attributed to epithelial-mesenchymal transition (EMT) regulation. Here, we aimed to assess whether miR-145 may affect EMT-associated markers/genes and suppress cervical cancer growth and motility, and to provide a mechanistic basis for these phenomena. METHODS: The identification of the SMAD-interacting protein 1 (SIP1) mRNA as putative miR-145 target was investigated using a 3' untranslated region (3'UTR) luciferase assay and Western blotting, respectively. The functional effects of exogenous miR-145 expression, miR-145 suppression or siRNA-mediated SIP1 expression down-regulation in cervical cancer-derived C33A and SiHa cells were analysed using Western blotting, BrdU incorporation (proliferation), transwell migration and invasion assays. In addition, the expression levels of miR-145 and SIP1 were determined in primary human cervical cancer and non-cancer tissue samples using qRT-PCR. RESULTS: We found that miR-145 binds to the wild-type 3'UTR of SIP1, but not to its mutant counterpart, and that, through this binding, miR-145 can effectively down-regulate SIP1 expression. In addition, we found that exogenous miR-145 expression or siRNA-mediated down-regulation of SIP1 expression attenuates the proliferation, migration and invasion of C33A and SiHa cells and alters the expression of the EMT-associated markers CDH1, VIM and SNAI1, whereas inhibition of endogenous miR-145 expression elicited the opposite effects. The expression of miR-145 in cervical cancer tissue samples was found to be low, while that of SIP1 was found to be high compared to non-cancerous cervical tissues. An inverse expression correlation between the two was substantiated through the anlaysis of data deposited in the TCGA database. CONCLUSION: Our data indicate that low miR-145 expression levels in conjunction with elevated SIP1 expression levels may contribute to cervical cancer development. MiR-145-mediated regulation of SIP1 provides a novel mechanistic basis for its tumour suppressive mode of action in human cervical cancer cells.[Abstract] [Full Text] [Related] [New Search]