These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: From Breast Cancer to Antimicrobial: Combating Extremely Resistant Gram-Negative "Superbugs" Using Novel Combinations of Polymyxin B with Selective Estrogen Receptor Modulators. Author: Hussein MH, Schneider EK, Elliott AG, Han M, Reyes-Ortega F, Morris F, Blastovich MAT, Jasim R, Currie B, Mayo M, Baker M, Cooper MA, Li J, Velkov T. Journal: Microb Drug Resist; 2017 Jul; 23(5):640-650. PubMed ID: 27935770. Abstract: Novel therapeutic approaches are urgently needed to combat nosocomial infections caused by extremely drug-resistant (XDR) "superbugs." This study aimed to investigate the synergistic antibacterial activity of polymyxin B in combination with selective estrogen receptor modulators (SERMs) against problematic Gram-negative pathogens. In vitro synergistic antibacterial activity of polymyxin B and the SERMs tamoxifen, raloxifene, and toremifene was assessed using the microdilution checkerboard and static time-kill assays against a panel of Gram-negative isolates. Polymyxin B and the SERMs were ineffective when used as monotherapy against polymyxin-resistant minimum inhibitory concentration ([MIC] ≥8 mg/L) Pseudomonas aeruginosa, Klebsiella pneumoniae, and Acinetobacter baumannii. However, when used in combination, clinically relevant concentrations of polymyxin B and SERMs displayed synergistic killing against the polymyxin-resistant P. aeruginosa, K. pneumoniae, and A. baumannii isolates as demonstrated by a ≥2-3 log10 decrease in bacterial count (CFU/ml) after 24 hours. The combination of polymyxin B with toremifene demonstrated very potent antibacterial activity against P. aeruginosa biofilms in an artificial sputum media assay. Moreover, polymyxin B combined with toremifene synergistically induced cytosolic green fluorescence protein release, cytoplasmic membrane depolarization, permeabilizing activity in a nitrocefin assay, and an increase of cellular reactive oxygen species from P. aeruginosa cells. In addition, scanning and transmission electron micrographs showed that polymyxin B in combination with toremifene causes distinctive damage to the outer membrane of P. aeruginosa cells, compared with treatments with each compound per se. In conclusion, the combination of polymyxin B and SERMs illustrated a synergistic activity against XDR Gram-negative pathogens, including highly polymyxin-resistant P. aeruginosa isolates, and represents a novel combination therapy strategy for the treatment of infections because of problematic XDR Gram-negative pathogens.[Abstract] [Full Text] [Related] [New Search]