These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Influence of work rate on ventilatory and gas exchange kinetics. Author: Casaburi R, Barstow TJ, Robinson T, Wasserman K. Journal: J Appl Physiol (1985); 1989 Aug; 67(2):547-55. PubMed ID: 2793656. Abstract: A linear system has the property that the kinetics of response do not depend on the stimulus amplitude. We sought to determine whether the responses of O2 uptake (VO2), CO2 output (VCO2), and ventilation (VE) in the transition between loadless pedaling and higher work rates are linear in this respect. Four healthy subjects performed a total of 158 cycle ergometer tests in which 10 min of exercise followed unloaded pedaling. Each subject performed three to nine tests at each of seven work rates, spaced evenly below the maximum the subject could sustain. VO2, VCO2, and VE were measured breath by breath, and studies at the same work rate were time aligned and averaged. Computerized nonlinear regression techniques were used to fit a single exponential and two more complex expressions to each response time course. End-exercise blood lactate was determined at each work rate. Both VE and VO2 kinetics were markedly slower at work rates associated with sustained blood lactate elevations. A tendency was also detected for VO2 (but not VE) kinetics to be slower as work rate increased for exercise intensities not associated with lactic acidosis (P less than 0.01). VO2 kinetics at high work rates were well characterized by the addition of a slower exponential component to the faster component, which was seen at lower work rates. In contrast, VCO2 kinetics did not slow at the higher exercise intensities; this may be the result of the coincident influence of several sources of CO2 related to lactic acidosis. These findings provide guidance for interpretation of ventilatory and gas exchange kinetics.[Abstract] [Full Text] [Related] [New Search]