These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Loss-of-Function Mutations in YY1AP1 Lead to Grange Syndrome and a Fibromuscular Dysplasia-Like Vascular Disease. Author: Guo DC, Duan XY, Regalado ES, Mellor-Crummey L, Kwartler CS, Kim D, Lieberman K, de Vries BBA, Pfundt R, Schinzel A, Kotzot D, Shen X, Yang ML, University of Washington Center for Mendelian Genomics, Bamshad MJ, Nickerson DA, Gornik HL, Ganesh SK, Braverman AC, Grange DK, Milewicz DM. Journal: Am J Hum Genet; 2017 Jan 05; 100(1):21-30. PubMed ID: 27939641. Abstract: Fibromuscular dysplasia (FMD) is a heterogeneous group of non-atherosclerotic and non-inflammatory arterial diseases that primarily involves the renal and cerebrovascular arteries. Grange syndrome is an autosomal-recessive condition characterized by severe and early-onset vascular disease similar to FMD and variable penetrance of brachydactyly, syndactyly, bone fragility, and learning disabilities. Exome-sequencing analysis of DNA from three affected siblings with Grange syndrome identified compound heterozygous nonsense variants in YY1AP1, and homozygous nonsense or frameshift YY1AP1 variants were subsequently identified in additional unrelated probands with Grange syndrome. YY1AP1 encodes yin yang 1 (YY1)-associated protein 1 and is an activator of the YY1 transcription factor. We determined that YY1AP1 localizes to the nucleus and is a component of the INO80 chromatin remodeling complex, which is responsible for transcriptional regulation, DNA repair, and replication. Molecular studies revealed that loss of YY1AP1 in vascular smooth muscle cells leads to cell cycle arrest with decreased proliferation and increased levels of the cell cycle regulator p21/WAF/CDKN1A and disrupts TGF-β-driven differentiation of smooth muscle cells. Identification of YY1AP1 mutations as a cause of FMD indicates that this condition can result from underlying genetic variants that significantly alter the phenotype of vascular smooth muscle cells.[Abstract] [Full Text] [Related] [New Search]