These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Nitric oxide protects carbon assimilation process of watermelon from boron-induced oxidative injury. Author: Farag M, Najeeb U, Yang J, Hu Z, Fang ZM. Journal: Plant Physiol Biochem; 2017 Feb; 111():166-173. PubMed ID: 27940267. Abstract: Nitric oxide (NO) mediates plant response to a variety of abiotic stresses; however, limited information is available on its effect on boron (B)-stressed watermelon plants. The present study investigates the mechanism through which NO protects watermelon seedlings from B deficiency and toxicity stresses. Five days old watermelon seedlings were exposed to B (0, 0.5 and 10 mg L-1) alone or with 75 μmole of NO donor sodium nitroprusside (SNP) for 30 days. Both low and high B concentrations in the media altered nutrient accumulation and impaired various physiological processes of watermelon seedlings, leading to a significant reduction in biomass production. The plants exposed to B deficient or toxic concentrations had 66 and 69% lower shoot dry weight, respectively compared with optimum B levels. B toxicity-induced growth inhibition of watermelon seedlings was associated with high B translocation to shoot tissues, which caused lipid membrane peroxidation (12% increase) and chlorophyll destruction (25% reduction). In contrast, B deficiency accelerated generation of reactive oxygen species (ROS), specifically OH-1 and induced cellular oxidative injury. Exogenously applied SNP promoted leaf chlorophyll, photosynthesis and consequently biomass production in B-stressed watermelon seedlings by reducing B accumulation, lipid membrane peroxidation and ROS generation. It also activated antioxidant enzymes such as SOD, POD and APX, and protected the seedlings from ROS-induced cellular burst.[Abstract] [Full Text] [Related] [New Search]