These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Detecting free-living steps and walking bouts: validating an algorithm for macro gait analysis.
    Author: Hickey A, Del Din S, Rochester L, Godfrey A.
    Journal: Physiol Meas; 2017 Jan; 38(1):N1-N15. PubMed ID: 27941238.
    Abstract:
    Research suggests wearables and not instrumented walkways are better suited to quantify gait outcomes in clinic and free-living environments, providing a more comprehensive overview of walking due to continuous monitoring. Numerous validation studies in controlled settings exist, but few have examined the validity of wearables and associated algorithms for identifying and quantifying step counts and walking bouts in uncontrolled (free-living) environments. Studies which have examined free-living step and bout count validity found limited agreement due to variations in walking speed, changing terrain or task. Here we present a gait segmentation algorithm to define free-living step count and walking bouts from an open-source, high-resolution, accelerometer-based wearable (AX3, Axivity). Ten healthy participants (20-33 years) wore two portable gait measurement systems; a wearable accelerometer on the lower-back and a wearable body-mounted camera (GoPro HERO) on the chest, for 1 h on two separate occasions (24 h apart) during free-living activities. Step count and walking bouts were derived for both measurement systems and compared. For all participants during a total of almost 20 h of uncontrolled and unscripted free-living activity data, excellent relative (rho  ⩾  0.941) and absolute (ICC(2,1)  ⩾  0.975) agreement with no presence of bias were identified for step count compared to the camera (gold standard reference). Walking bout identification showed excellent relative (rho  ⩾  0.909) and absolute agreement (ICC(2,1)  ⩾  0.941) but demonstrated significant bias. The algorithm employed for identifying and quantifying steps and bouts from a single wearable accelerometer worn on the lower-back has been demonstrated to be valid and could be used for pragmatic gait analysis in prolonged uncontrolled free-living environments.
    [Abstract] [Full Text] [Related] [New Search]