These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Economic analysis of revenue losses and control costs associated with the spotted wing drosophila, Drosophila suzukii (Matsumura), in the California raspberry industry.
    Author: Farnsworth D, Hamby KA, Bolda M, Goodhue RE, Williams JC, Zalom FG.
    Journal: Pest Manag Sci; 2017 Jun; 73(6):1083-1090. PubMed ID: 27943618.
    Abstract:
    BACKGROUND: The spotted wing drosophila (SWD), Drosophila suzukii (Matsumura), is an invasive vinegar fly with a preference for infesting commercially viable berries and stone fruits. SWD infestations can reduce yields significantly, necessitating additional management activities. This analysis estimates economic losses in the California raspberry industry that have resulted from the SWD invasion. RESULTS: California raspberry producers experienced considerable revenue losses and management costs in the first years following SWD's invasion of North America. Conventional producers have since developed effective chemical management programs, virtually eliminating revenue losses due to SWD and reducing the cost of management to that of purchasing and applying insecticides more often. Organic raspberry producers, who do not have access to the same chemical controls, continue to confront substantial SWD-related revenue losses. These losses can be mitigated only by applying expensive insecticides registered for organic use and by performing labor-intensive field sanitation. CONCLUSION: SWD's invasion into North America has caused extensive crop losses to berry and cherry crops in California and elsewhere. Agricultural producers and researchers have responded quickly to this pest by developing management programs that significantly reduce revenue losses. Economic losses are expected to continue to fall as producers learn to manage SWD more efficiently and as new control tactics become available. © 2016 Society of Chemical Industry.
    [Abstract] [Full Text] [Related] [New Search]