These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Growth rate of crystalline ice and the diffusivity of supercooled water from 126 to 262 K.
    Author: Xu Y, Petrik NG, Smith RS, Kay BD, Kimmel GA.
    Journal: Proc Natl Acad Sci U S A; 2016 Dec 27; 113(52):14921-14925. PubMed ID: 27956609.
    Abstract:
    Understanding deeply supercooled water is key to unraveling many of water's anomalous properties. However, developing this understanding has proven difficult due to rapid and uncontrolled crystallization. Using a pulsed-laser-heating technique, we measure the growth rate of crystalline ice, G(T), for 180 K < T < 262 K, that is, deep within water's "no man's land" in ultrahigh-vacuum conditions. Isothermal measurements of G(T) are also made for 126 K ≤ T ≤ 151 K. The self-diffusion of supercooled liquid water, D(T), is obtained from G(T) using the Wilson-Frenkel model of crystal growth. For T > 237 K and P ∼ 10-8 Pa, G(T) and D(T) have super-Arrhenius ("fragile") temperature dependences, but both cross over to Arrhenius ("strong") behavior with a large activation energy in no man's land. The fact that G(T) and D(T) are smoothly varying rules out the hypothesis that liquid water's properties have a singularity at or near 228 K at ambient pressures. However, the results are consistent with a previous prediction for D(T) that assumed no thermodynamic transitions occur in no man's land.
    [Abstract] [Full Text] [Related] [New Search]