These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Blood-to-retina transport of riboflavin via RFVTs at the inner blood-retinal barrier. Author: Kubo Y, Yahata S, Miki S, Akanuma SI, Hosoya KI. Journal: Drug Metab Pharmacokinet; 2017 Feb; 32(1):92-99. PubMed ID: 27964953. Abstract: Riboflavin (vitamin B2) supply to the retina across the inner blood-retinal barrier (BRB) was investigated. In rats, the apparent influx permeability clearance of [3H]riboflavin (62.8 μL/(min·g retina)) was much higher than that of a non-permeable paracellular marker, suggesting the facilitative influx transport of riboflavin across the BRB. The retinal uptake index (RUI) of [3H]riboflavin was 59.0%, and significantly reduced by flavin adenine dinucleotide (FAD), but not by l-ascorbic acid, suggesting the substrate specificity of riboflavin transport. TR-iBRB2 cells, an in vitro model of the inner BRB, showed a temperature- and concentration-dependent [3H]riboflavin uptake with a Km of 113 nM, suggesting that the influx transport of riboflavin across the inner BRB involves a carrier-mediated process. [3H]Riboflavin uptake by TR-iBRB2 cells was slightly altered by Na+- and Cl--free buffers, suggesting that riboflavin transport at the inner BRB is preferentially Na+- and Cl--independent. [3H]Riboflavin uptake by TR-iBRB2 cells was significantly reduced by riboflavin analogues while the uptake remained unchanged by other vitamins. The function and inhibition profile suggested the involvement of riboflavin transporters (SLC52A/RFVT) in riboflavin transport at the inner BRB, and this is supported by expression and knockdown analysis of rRFVT2 (Slc52a2) and rRFVT3 (Slc52a3) in TR-iBRB2 cells.[Abstract] [Full Text] [Related] [New Search]