These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Placental-specific sFLT-1: role in pre-eclamptic pathophysiology and its translational possibilities for clinical prediction and diagnosis. Author: Palmer KR, Tong S, Kaitu'u-Lino TJ. Journal: Mol Hum Reprod; 2017 Feb 10; 23(2):69-78. PubMed ID: 27986932. Abstract: Pre-eclampsia is a common obstetric complication globally responsible for a significant burden of maternal and perinatal morbidity and mortality. Central to its pathophysiology is the anti-angiogenic protein, soluble fms-like tyrosine kinase-1 (sFLT-1). sFLT-1 is released from a range of tissues into the circulation, where it antagonizes the activity of vascular endothelial growth factor and placental growth factor leading to endothelial dysfunction. It is this widespread endothelial dysfunction that produces the clinical features of pre-eclampsia including hypertension and proteinuria. There are multiple splice variants of sFLT-1. One, known as sFLT-1 e15a, evolved quite recently and is only present in humans and higher order primates. This sFLT-1 variant is also the main sFLT-1 secreted from the placenta. Recent work has shown that sFLT-1 e15a is significantly elevated in the placenta and circulation of women with pre-eclampsia. It is also biologically active, capable of causing endothelial dysfunction and the end-organ dysfunction seen in pre-eclampsia. Indeed, the over-expression of sFLT-1 e15a in mice recapitulates the pre-eclamptic phenotype in pregnancy. Therefore, here we propose that sFLT-1 e15a may be the sFLT-1 variant primarily responsible for pre-eclampsia, a uniquely human disease. Furthermore, this placental-specific sFLT-1 variant provides promise for use as an accurate biomarker in the prediction or diagnosis of pre-eclampsia.[Abstract] [Full Text] [Related] [New Search]