These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Protection of Dexmedetomidine Against Ischemia/Reperfusion-Induced Apoptotic Insults to Neuronal Cells Occurs Via an Intrinsic Mitochondria-Dependent Pathway.
    Author: Wu GJ, Chen JT, Tsai HC, Chen TL, Liu SH, Chen RM.
    Journal: J Cell Biochem; 2017 Sep; 118(9):2635-2644. PubMed ID: 27987330.
    Abstract:
    Dexmedetomidine, an agonist of alpha2-adrenergic receptors, is used for critically ill patients to induce and maintain sedation and analgesia. Brain ischemia/reperfusion (I/R) usually causes severe neuronal injuries to intensive care unit patients. This study was aimed to evaluate the effects of dexmedetomidine on I/R-induced insults to neuronal cells and the possible mechanisms. Treatment of neuro-2a cells with dexmedetomidine did not affect cell viability but could protect against I/R-induced cell death. Separately, the I/R-triggered cell shrinkage, DNA fragmentation, and apoptosis in neuro-2a cells were alleviated by dexmedetomidine. As to the mechanisms, exposure of neuro-2a cells to dexmedetomidine substantially attenuated I/R-induced translocation of Bax protein from the cytosol to mitochondria and reduction in the mitochondrial membrane potential (MMP). Successively, dexmedetomidine decreased cytochrome c release from mitochondria to the cytoplasm and consequent cascade activations of caspases-9, -3, and -6 in I/R-treated neuro-2a cells. Interestingly, downregulating caspase-6 activity synergistically improved dexmedetomidine-induced defense against I/R-induced apoptosis of neuro-2a cells. The dexmedetomidine-involved neuroprotection was further confirmed in the other NB41A3 neuronal cells by significantly attenuating I/R-induced changes in the MMP, caspase-3 activation, DNA fragmentation, and cell apoptosis. Taken together, this study has shown the neuroprotective effects of dexmedetomidine against I/R-induced apoptotic insults via an intrinsic Bax-mitochondria-cytochrome c-caspase protease pathway. J. Cell. Biochem. 118: 2635-2644, 2017. © 2016 Wiley Periodicals, Inc.
    [Abstract] [Full Text] [Related] [New Search]