These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Fabrication and evaluation of chitosan/NaYF4:Yb3+/Tm3+ upconversion nanoparticles composite beads based on the gelling of Pickering emulsion droplets. Author: Yan H, Chen X, Shi J, Shi Z, Sun W, Lin Q, Wang X, Dai Z. Journal: Mater Sci Eng C Mater Biol Appl; 2017 Feb 01; 71():51-59. PubMed ID: 27987738. Abstract: The rare earth ion doped upconversion nanoparticles (UCNPs) synthesized by hydrophobic organic ligands possess poor solubility and low fluorescence quantum yield in aqueous media. To conquer this issue, NaYF4:Yb3+/Tm3+ UCNPs, synthesized by a hydrothermal method, were coated with F127 and then assembled with chitosan to fabricate the chitosan/NaYF4:Yb3+/Tm3+ composite beads (CS/NaYF4:Yb3+/Tm3+ CBs) by Pickering emulsion system. The characterization results revealed that the as-synthesized NaYF4:Yb3+/Tm3+ UCNPs with an average size of 20nm exhibited spherical morphology, high crystallinity and characteristic emission upconversion fluorescence with an overall blue color output. The NaYF4:Yb3+/Tm3+ UCNPs were successfully conjugated on the surface of chitosan beads by the gelling of emulsion droplets. The resultant CS/NaYF4:Yb3+/Tm3+ CBs showed good upconversion luminescent property, drug-loading capacity, release performance and excellent biocompatibility, exhibiting great potentials in targeted drug delivery and tissue engineering with potential tracking capability and lasting release performance.[Abstract] [Full Text] [Related] [New Search]