These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Vitamin D receptor agonist VS-105 directly modulates parathyroid hormone expression in human parathyroid cells and in 5/6 nephrectomized rats. Author: Sawada K, Wu-Wong JR, Chen YW, Wessale JL, Kanai G, Kakuta T, Fukagawa M. Journal: J Steroid Biochem Mol Biol; 2017 Mar; 167():48-54. PubMed ID: 27989797. Abstract: Vitamin D receptor (VDR) agonists (VDRAs) are commonly used to treat secondary hyperparathyroidism (SHPT) associated with chronic kidney disease (CKD). Current VDRA therapy often causes hypercalcemia, which is a critical risk for vascular calcification. Previously we have shown that a novel VDRA, VS-105, effectively suppresses serum parathyroid hormone (PTH) without affecting serum calcium levels in 5/6 nephrectomized (NX) uremic rats. However, it is not known whether VS-105 directly regulates PTH gene expression. To study the direct effect of VS-105 on modulating PTH, we tested VS-105 and paricalcitol in the spheroid culture of parathyroid cells from human SHPT patients, and examined the time-dependent effect of the compounds on regulating serum PTH in 5/6 NX uremic rats (i.p. 3x/week for 14days). In human parathyroid cells, VS-105 (100nM) down-regulated PTH mRNA expression (to 3.6% of control) and reduced secreted PTH (to 43.9% of control); paricalcitol was less effective. VS-105 effectively up-regulated the expression of VDR (1.9-fold of control) and CaSR (1.8-fold of control) in spheroids; paricalcitol was also less effective. In 5/6 NX rats, one single dose of 0.05-0.2μg/kg of VS-105 or 0.02-0.04μg/kg of paricalcitol effectively reduced serum PTH by >40% on Day 2. Serum PTH remained suppressed during the dosing period, but tended to rebound in the paricalcitol groups. These data indicate that VS-105 exerts a rapid effect on suppressing serum PTH, directly down-regulates the PTH gene, and modulates PTH, VDR and CaSR gene expression more effectively than paricalcitol.[Abstract] [Full Text] [Related] [New Search]