These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Cloning and functional characterization of IRAK4 in large yellow croaker (Larimichthys crocea) that associates with MyD88 but impairs NF-κB activation.
    Author: Zou PF, Huang XN, Yao CL, Sun QX, Li Y, Zhu Q, Yu ZX, Fan ZJ.
    Journal: Fish Shellfish Immunol; 2017 Apr; 63():452-464. PubMed ID: 27989863.
    Abstract:
    As crucial signaling transducer in Toll-like receptor (TLR) and interleukin (IL)-1 receptor (IL-1R) signaling pathway, IL-1R-associated kinase 4 (IRAK4) mediates downstream signaling cascades and plays important roles in innate and adaptive immune responses. In the present study, an IRAK4 orthologue was characterized from large yellow croaker (Larimichthys crocea), named Lc-IRAK4, with a conservative N-terminal death domain and a C-terminal protein kinase domain. The genome of Lc-IRAK4 is structured into eleven exons and ten introns. Expression analysis indicated that Lc-IRAK4 was widely expressed in tested tissues, with the highest level in liver and weakest in muscle. Additionally, in the spleen, liver tissues and blood, it could be induced by poly I:C and LPS stimulation, but not be induced by Vibrio parahemolyticus infection. Fluorescence microscopy assays revealed that Lc-IRAK4 localized in the cytoplasm in HEK 293T cells. It was also determined that Lc-IRAK4 could interact with MyD88, whereas MyD88-mediated NF-κB activation was significantly impaired when co-transfected the two in HEK 293T cells. These findings collectively indicated that although Lc-IRAK4 was evolutionarily conserved in vertebrates, the exact function especially the signaling transduction mediated by IRAK4 in fish immune response was different from that in mammals, which impaired MyD88-mediated NF-κB activation.
    [Abstract] [Full Text] [Related] [New Search]