These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: PNIPAM grafted surfaces through ATRP and RAFT polymerization: Chemistry and bioadhesion.
    Author: Conzatti G, Cavalie S, Combes C, Torrisani J, Carrere N, Tourrette A.
    Journal: Colloids Surf B Biointerfaces; 2017 Mar 01; 151():143-155. PubMed ID: 27992845.
    Abstract:
    Biomaterials surface design is critical for the control of materials and biological system interactions. Being regulated by a layer of molecular dimensions, bioadhesion could be effectively tailored by polymer surface grafting. Basically, this surface modification can be controlled by radical polymerization, which is a useful tool for this purpose. The aim of this review is to provide a comprehensive overview of the role of surface characteristics on bioadhesion properties. We place a particular focus on biomaterials functionalized with a brush surface, on presentation of grafting techniques for "grafting to" and "grafting from" strategies and on brush characterization methods. Since atom transfer radical polymerization (ATRP) and reversible addition-fragmentation chain transfer (RAFT) polymerization are the most frequently used grafting techniques, their main characteristics will be explained. Through the example of poly(N-isopropylacrylamide) (PNIPAM) which is a widely used polymer allowing tuneable cell adhesion, smart surfaces involving PNIPAM will be presented with their main modern applications.
    [Abstract] [Full Text] [Related] [New Search]