These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Sequential and Coupled Proton and Electron Transfer Events in the S2 → S3 Transition of Photosynthetic Water Oxidation Revealed by Time-Resolved X-ray Absorption Spectroscopy.
    Author: Zaharieva I, Dau H, Haumann M.
    Journal: Biochemistry; 2016 Dec 20; 55(50):6996-7004. PubMed ID: 27992997.
    Abstract:
    The choreography of electron transfer (ET) and proton transfer (PT) in the S-state cycle at the manganese-calcium (Mn4Ca) complex of photosystem II (PSII) is pivotal for the mechanism of photosynthetic water oxidation. Time-resolved room-temperature X-ray absorption spectroscopy (XAS) at the Mn K-edge was employed to determine the kinetic isotope effect (KIE = τD2OH2O) of the four S transitions in a PSII membrane particle preparation in H2O and D2O buffers. We found a small KIE (1.2-1.4) for manganese oxidation by ET from Mn4Ca to the tyrosine radical (YZ•+) in the S0n → S1+ and S1n → S2+ transitions and for manganese reduction by ET from substrate water to manganese ions in the O2-evolving S3n → S0n step, but a larger KIE (∼1.8) for manganese oxidation in the S2n → S3+ step (subscript, number of accumulated oxidizing equivalents; superscript, charge of Mn4Ca). Kinetic lag phases detected in the XAS transients prior to the respective ET steps were assigned to S3+ → S3n (∼150 μs, H2O; ∼380 μs, D2O) and S2+ → S2n (∼25 μs, H2O; ∼120 μs, D2O) steps and attributed to PT events according to their comparatively large KIE (∼2.4, ∼4.5). Our results suggest that proton movements and molecular rearrangements within the hydrogen-bonded network involving Mn4Ca and its bound (substrate) water ligands and the surrounding amino acid/water matrix govern to different extents the rates of all ET steps but affect particularly strongly the S2n → S3+ transition, assigned as proton-coupled electron transfer. Observation of a lag phase in the classical S2 → S3 transition verifies that the associated PT is a prerequisite for subsequent ET, which completes Mn4Ca oxidation to the all-Mn(IV) level.
    [Abstract] [Full Text] [Related] [New Search]