These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mapping QTLs associated with agronomic and physiological traits under terminal drought and heat stress conditions in wheat (Triticum aestivum L.).
    Author: Tahmasebi S, Heidari B, Pakniyat H, McIntyre CL.
    Journal: Genome; 2017 Jan; 60(1):26-45. PubMed ID: 27996306.
    Abstract:
    Wheat crops frequently experience a combination of abiotic stresses in the field, but most quantitative trait loci (QTL) studies have focused on the identification of QTLs for traits under single stress field conditions. A recombinant inbred line (RIL) population derived from SeriM82 × Babax was used to map QTLs under well-irrigated, heat, drought, and a combination of heat and drought stress conditions in two years. A total of 477 DNA markers were used to construct linkage groups that covered 1619.6 cM of the genome, with an average distance of 3.39 cM between adjacent markers. Moderate to relatively high heritability estimates (0.60-0.70) were observed for plant height (PHE), grain yield (YLD), and grain per square meter (GM2). The most important QTLs for days to heading (DHE), thousand grain weight (TGW), and YLD were detected on chromosomes 1B, 1D-a, and 7D-b. The prominent QTLs related to canopy temperature were on 3B. Results showed that common QTLs for DHE, YLD, and TGW on 7D-b were validated in heat and drought trials. Three QTLs for chlorophyll content in SPAD unit (on 1A/6B), leaf rolling (ROL) (on 3B/4A), and GM2 (on 1B/7D-b) showed significant epistasis × environment interaction. Six heat- or drought-specific QTLs (linked to 7D-acc/cat-10, 1B-agc/cta-9, 1A-aag/cta-8, 4A-acg/cta-3, 1B-aca/caa-3, and 1B-agc/cta-9 for day to maturity (DMA), SPAD, spikelet compactness (SCOM), TGW, GM2, and GM2, respectively) were stable and validated over two years. The major DHE QTL linked to 7D-acc/cat-10, with no QTL × environment (QE) interaction increased TGW and YLD. This QTL (5.68 ≤ LOD ≤ 10.5) explained up to 19.6% variation in YLD in drought, heat, and combined stress trials. This marker as a candidate could be used for verification in other populations and identifying superior allelic variations in wheat cultivars or its wild progenitors to increase the efficiency of selection of high yielding lines adapted to end-season heat and drought stress conditions.
    [Abstract] [Full Text] [Related] [New Search]