These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Axial and appendicular body proportions for evaluation of limb and trunk asymmetry.
    Author: Weinberg DS, Liu RW, Li SQ, Sanders JO, Cooperman DR.
    Journal: Acta Orthop; 2017 Apr; 88(2):185-191. PubMed ID: 27998211.
    Abstract:
    Background and purpose - When children with irregular body proportions or asymmetric limbs present, it may be unclear where the pathology is located. An improved understanding of the clinical ratio between upper extremity, lower extremity, and spine length may help elucidate whether there is disproportion between the trunk and limbs, and whether there is a reduction deficit of the shorter limb rather than hypertrophy of the longer limb. Patients and methods - We used the Brush Foundation study of child growth and development, which was a prospective, longitudinal study of healthy children between the 1930s and the 1950s, and we collected serial clinical measurements for 290 children at 3,326 visits. Children ranged from 2 to 20 years of age during the study period. Linear and quadratic regression were used to construct nomographs and 95% prediction intervals for anthropometric body proportions. Results - The maximum anterior superior iliac spine height to sitting height ratio occurred at 12.4 years in females and at 14.17 years in males. Overall, the ratio of arm length to sitting height was 0.76 (SD 0.06), the ratio of arm length to anterior superior iliac spine height was 0.76 (SD 0.03), and the ratio of anterior superior iliac spine height to sitting height was 0.98 (SD 0.13). When comparing ratios between arm length, anterior superior iliac spine height, and sitting height, the smallest variance between appendicular proportions was found in the arm length to anterior superior iliac spine height ratio. Interpretation - We recommend comparisons between total arm length and anterior superior iliac spine height to distinguish limb reduction deficits from hemi-hypertrophy, with sitting height being used only if combined upper and lower extremity discrepancy is noted.
    [Abstract] [Full Text] [Related] [New Search]